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Imagine that you're an NHL GM.

You want to add some goal scoring talent
to your roster.
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Two potential acquisitions

24 years old 24 years old
15 goals in 2014-2015 16 goals in 2014-2015
0.26 goals per game (career) 0.30 goals per game (career)
48.1% Corsi-tied (career) 47.6% Corsi-tied (career)
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Which player should you trade for?
The one who scores in high pressure situations.
or

The one who is more clutch
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Outline of this talk

An NHL Win Probability Model
Narrative Building using Win Probabilities

Measuring Offensive Productivity with Added Goal Value

~ U IT SLOAN . e
Gl 1S LTS e ticketmaster* 42 AnaLyrics




Outline of this talk

An NHL Win Probability Model
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An NHL Win Probability Metric

» Hockey journalists and statisticians currently lack many empirical
tools available in other sports

One such tool is a metric for calculating second-by-second win
probabilities

» The metric introduced here:
» is the only such metric currently available
» incorporates powerplay information in a novel way
» provides a flexible framework which can unify the work being done on
puck possession, zone starts, spatial data, etc.
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Intuition about the metric

Pt<71)) = P[(ll,’ (5[ + l) : A(",»/, : I/[)+
Py(wldy — 1) - A(yg - ve)+
Pi(w|de)(1 — Ay - ve)) (1 — A(ya - 1))

When the teams are playing at full-strength, the vector v is all zeros.
This means that the metric simplifies to:

Pi(w) = Py(wld;)
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Intuition about the metric

Pi(w) = Py(w|6+ 1) Alyn - ve)+
Pi(w|dy — 1) - Alva - ve)+
Pr(wl]de)(1 = Alyn - 1)) (1 = A(va - 1))

If the home team is on a powerplay then:
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Intuition about the metric

P(w) = Pi(wld+1)-Alyy - v)+
Pi(w|dy — 1) - Alva - ve)+
Pr(wl]de)(1 = Alyn - 1)) (1 = A(va - 1))

If the home team is on a powerplay then:

» A(7p - 1) is the probability that the home team scores a PP goal
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Intuition about the metric

Pi(w) = Py(w|6+ 1) Alyn - ve)+
Pt(w‘ét —1) - A(ya - v)+
Py(w|6r) (1 — Alyn - 1)) (1 — A(va - 1))

If the home team is on a powerplay then:
» A(~p, - 1) is the probability that the home team scores a PP goal
» A(7, - 1) is the probability that the away team scores a SH goal
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Intuition about the metric

Pi(w) = Py(w|d;+1) Ay - vi)+
By(w]dy = 1) - Aya - i)+
By(w]g)(1 = Alyn - 1)) (1 = A(va - 1))

If the home team is on a powerplay then:
» A(~p, - 1) is the probability that the home team scores a PP goal
» A(7, - 1) is the probability that the away team scores a SH goal

» (1 — A(yp ) (1 — A(vq - 1)) is the probability that neither team
scores before they return to even strength
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A flexible framework

Pi(w) = Py(w|dp+1) - A(yn - ve)+
Py(w|d; — 1) - A(va - ve)+
Py(w|d:) (1 — Ay - v1))(1=A(ya - 1))

Everything in red represents the probability that a goal is scored by one
team or the other in some period of time.

The framework here allows for any statistics to be included, as long as you
have a model that predicts how the stat impacts goal-scoring rates

» Which players are on the ice » Corsi and Fenwick stats
» Zone starts > Spatial data
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Estimating P;(w|d;)

I used empirical data to estimate P;(w|d;)
» Data from all regular season games from 2005/2006 through
2012/2013
> Over 9000 games

I then used a weak Bayesian prior to smooth out the data

M IT SLOAN . )i =
Sl SPORTS ANALYTICS CONFERENCE ticketmaster- 42/4&41_ Y77

11



100%

90%

~ ®
=] S
B ES

Probability of team ahead winnning
o
2
>
|

50% T T

20:00 15:00 10:00

First period

R VT SLOAN
sl SPORTS ANALYT!CS CPNFERENFE

s ESPTE

l l l I l l I !
15:00 10:00 5:00 2ndint. 15:00 10:00 5:00 0:00

Second period Third period

ticketmaster® 42 AnaLyir -



Estimating P;(w|d;)
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Outline of this talk

Narrative Building using Win Probabilities
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Probability of DAL winning the game

Flyers at Stars
Saturday, October 18, 2014
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2014 Conference Finals

4 Kings vs. Blackhawks
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Probability of CHI winning the series
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Outline of this talk

Measuring Offensive Productivity with Added Goal Value
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Added Goal Value

Not all goals are created equal.

A 6™ goal in a 5-0 game is less valuable to a team than an overtime
winner.

Traditional statistics like total goals masks this fact and treats every goal
as equally important.

Added Goal Value (AGV) uses win probabilities to measure the
significance of each goal. Players with high AGV can be thought of as
being more “clutch.”
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The math behind Added Goal Value

A

< >
= J
AGVCrosby = Z Ak - jf K
k=1

A = Ptk‘f‘l(w) - Ptk: (w)
A]‘ = Ptj-l—l(w) - Ptj (w)

Ay = Py, +1(w) — P, (w): change in win probability from a goal scored by
Sidney Crosby
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The math behind Added Goal Value

Ay = Py 41(w) — P, (w): change in win probability from a goal scored by
Sidney Crosby
Aj = Py 11(w) — P, (w): change in win probability from a goal scored
another player
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Understanding Added Goal Value

K J
APWAY
AGVCTosby = § Ak - Z:JT]H K
k=1
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Understanding Added Goal Value

K J
APWAY
AGVCTosby = E Ay — Z:JT]H - K
k=1

Z,{,{:l Aj: total added win percentage for all goals scored by Crosby
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Understanding Added Goal Value

K J
A
AGVCTosby = E Ay — 227_1]11 - K
k=1

Z,{,{:l Aj: total added win percentage for all goals scored by Crosby

J )
#: average increase in win probability for all goals (about 17%)
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Understanding Added Goal Value

K J
APWAY
AGVCTosby = E Ay — z:]T]lj - K
k=1

Z,f:l Aj: total added win percentage for all goals scored by Crosby

J )
#: average increase in win probability for all goals (about 17%)

7 AL
=I=— . K: expected increase in win probability resulting from the K

goals scored by Crosby
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Added Goal Value
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Added Goal Value

AGYV since 2005/2006 season

Above average AGV,
Low goal scoring rate

Above average AGV,
High goal scoring rate

Below average AGV,
High goal scoring rate
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since 2005/2006 season
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Added Goal Value

AGYV since 2005/2006 season
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AGYV since 2005/2006 season

Saku Koivu
450 7 Above average AGV, Pavel Datsyuk Above average AGV,
4 Low goal scoring rate High goal scoring rate
400 q g Kylo Okposo Dniel Briere gh g g
350 - Mikko Koivu Loui Eriksson )
300 - Alex Ovechkin
250 t © o R T llya Kovalchuk
o P
200 o . * 5 Y9 s
Yoo . . " Marian Gaborik

Added Goal Value

Below average AGV,
High goal scoring rate

0.00 005 0.10 0.15 0.20 025 030 035 040 045 0.50 0.55 0.60

Goals per Game

WIT SLOAN ; =
SPORTS ANALYTICS CONFERENCE ticketmaster: §2AnaLyri 21

s ESPTE



Added Goal Value

AGYV since 2005/2006 season
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AGYV since 2005/2006 season

Saku Koivu
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Two potential acquisitions

24 years old 24 years old
15 goals in 2014-2015 16 goals in 2014-2015
0.26 goals per game (career) 0.30 goals per game (career)
48.1% Corsi-tied (career) 47.6% Corsi-tied (career)
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and

Added Goal Value

2010-2011 2011-2012 2012-2013 2013-2014 2014-2015
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Who to acquire?

-42.2 AGV (2014-2015) +40.2 AGV (2014-2015)
-88.9 AGV (career) +198.9 AGV (career)
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Next steps

» Enrich the win probability metric by adding more statistics
» Stanley Cup winning probabilities; playoff qualification probabilities
» Adapt AGV to shootout
> Add assists to AGV metric
» AGV app
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Thanks for listening!

rinkstats.com
stephenpettigrew.com
@rink stats
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